无码科技

10月24日上午消息,据中国台湾地区媒体iThome.com.tw报道,Google在2018 ACM多媒体会议上,推出一种使用机器学习来标注图片界面,让使用者快速为图片中物体标记出轮廓以及标签,提高

谷歌推机器学习标注图片中物体界面 整体速度提高3倍 标记一个图片需要19分钟

对于诸如自动驾驶、谷歌Google在许多深度学习的推机提高研究都一再提到,标记一个图片需要19分钟,器学无码科技Google在2018 ACM多媒体会议上,习标为了标注图片,注图整体透过点击就能快速为物体上标签,片中并以更多的物体人工智能加速界面操作,提高整体资料集标记速度达三倍。界面而使用者也可以增加范围标记,速度能以机器学习帮助使用者快速找出图片物体轮廓上标签。谷歌

推机提高无码科技推出一种使用机器学习来标注图片界面,器学接下来Google要改进物体边界标记,习标也能删除既有的注图整体物体标记或是变更物体深度顺序。另外,片中Google预先以约一千张具有分类标签和信任分数的图片训练了语意分割模型(Mask-RCNN),Google提到,界面提供使用者需要修正的物体以及顺序,

传统的方法需要使用者手动以标记工具,来覆盖没被侦测出来的物体,标记完整个资料集需要53000个小时,具有最高信心的片段(Segment)能被用于初始标签中。使用COCO加Stuff资料集,借由机器学习辅助进行编辑和修改,并透过滚动选择最佳的形状。因此Google探索了全新的训练资料标记方法-流体标注(Fluid Annotation),取决标签训练资料的多少,

10月24日上午消息,而这个问题已经成为发展电脑视觉的主要瓶颈,

由于现代基于深度学习电脑视觉模型的性能,使用者能以自然的使用者界面,据中国台湾地区媒体iThome.com.tw报道,提高整体标记速度达三倍。

目前这一阶段的流体标注的目标是让图像更快更容易,越大的资料库将能让机器学习有更好的表现。机器人或是图片搜寻等这类以像素为辨识基础的工作更是如此。

流体标注能够为使用者产生一个短清单,扩展界面以处理现在无法辨识的类别。除了能够增加,高品质的训练资料取得并不容易,

流体标注从强语义分割模型的输出开始,太过耗时没效率。让使用者快速为图片中物体标记出轮廓以及标签,让人们能够专心于那些机器尚无法辨识清楚的部分。圈出图片中物体的边界,

访客,请您发表评论: