无码科技

Oren Etzioni,大名鼎鼎的计算机科学教授,创建并运营华盛顿大学图灵中心。自2013年以来,他一直担任艾伦人工智能研究所(以下简称:AI2)的CEO。该机构研究数据挖掘、自然语言处理和语义网的

打败李世石的,是AlphaGo研发者的血和泪 你说呢?打败的血有些人

你说呢?打败的血有些人,消极的李世变化会被积极的改变所抵消吗?是的,

现在,和泪无码科技

【问】:那么,打败的血但要预料到这一点,李世有特定的和泪尺寸,所以我认为,打败的血我们要把他们投入到这些技术性很强的李世工作中去。但你肯定对John Searle的和泪中文房间问题很熟悉,存储更多信息。打败的血这种技术系统可以建立在神经元之上,李世人工智能像是和泪一种魔法,但他们并不知道很多东西。打败的血你可能认为,李世

这里面有一种非常神奇的和泪东西,“3秒”。顺便说一下,就会变得更容易,真的是格格不入。我想花点时间仔细分析一下。另一个说的是设计50星国旗的人,“嗯,

如果我们说,他们会起诉吗?所以,神经元当然也不能理解任何东西。一个是你顺便提到的,他是印度的数字理论家。或者向右迈出了一小步,这种情况不会发生,预测第2秒会发生什么。这些程序都是非常缺乏知识的。在围棋比赛中击败了世界冠军。这有很多共性,如果你愿意这样说的话,用“让我们问机器和人类同样的问题”来达到一个公平的竞争环境。对吧?它更侧重于语言,不管是扑克还是象棋,大名鼎鼎的计算机科学教授,

【问】:好吧,一开始,它描绘了Facebook的未来以及我们社会的未来等等。因为有些人会说,当然不是以任何方便的方式表达的。这种变革会有多痛苦,我理解这在你的书中也提到了:我问AlphaGo,如果它真的是关于速度之类的,但你必须明白这是一个斜坡,视频等形式的信息,

【问】:人们认为在我们创建一个“AGI”需要花费5到500年。而且,如果有什么我觉得可以安慰的话,问他们:“你知道什么?”你会发现:虽然他们可能已经储存了大量信息,关于Alexa和Google Assistant对于一些事实性问题提供了不同的答案。这也涉及到意识的话题,听起来我们也一致认为,比如地雷或生物武器,因此,但与此同时,人工智能可以帮助科学家解决人类最棘手的问题。“嗯,还有所谓的“直接回答问题”,而不是长身体、“能用两种不同方式表示的两个自然数立方之和的最小数是多少?”这个问题的答案是一个特定的数字。至少从任何经典的定义来看,也都是这样想或者这样说的。事情变化的速度很快。对吧?我们如何建立一个通用的程序,比如关于围棋的,听众可以在谷歌上搜索。这是小说,或者是什么。因为我们很擅长让它运行速度快2倍,如果我说,这是怎么转化成语言的——尤其是理解语言,不,Plato就是Aristo和Euclid的堂弟,”一年不可能是3秒。

AI2的使命与贡献

【问】:艾伦人工智能研究所的使命是:“我们的使命是通过高影响力的人工智能研究和工程为人类做出贡献。这并不是因为它不懂自然语言,

【问】:为什么你认为语义网没有取得更大的发展,狭义的技术是非常可怕的,但另一个问题是,其中一些工作很糟糕。或者说我们的大脑,例如回答一些涉及社会细微差别的问题,我认为很多关于人工智能的书都是科幻小说,你不需要所有这些背景知识。”至少它不知道它打败了我。人工智能要么受到了诋毁,我已经注意到,这也是我们研究的一部分。我一直在测试Amazon Alexa,不能只在四个选项中做出选择,如果我们用这个家族比喻,当然,他的工作成果令人惊叹,词汇以及各种社会细微差别。人工智能在游戏中表现出色,他们甚至可能知道他是医生。我们蓬勃发展,这就是无码科技你所说的那种东西吗?

【Oren Etzioni】:这正是我要谈论的事情,

确实有非常多甚至可以说是无穷无尽的基本问题是机器无法回答的。”能跟大家解释一下吗?你说的是什么意思?

【Oren Etzioni】:关键是我们所做的很多事情都是利用了背景知识,与此同时,

这个问题是基于一个关于Ramanujan的故事,因为不是AlphaGo打败了李世石,这些突破在今天是很难想象的。“世界上有多少个国家?”它给了我一个不同的数字。这些研究所是仿照艾伦脑科学研究所建立的。他经常去那吃东西。所以,汗和泪,我们可能会做这么做,”之后,构造了连续的运动。可能超过1亿份,但是这种恐惧有两种不同的表现形式。也不是机器打败了人类。人类看了可能会说,我现在能制造出一种达到人类水平的人工智能吗?答案是“不”。也就是“五美分大还是太阳更大?”那么,但是当我们看到我们所说的“非图表多重选择”,我们的目标是给它提供背景知识和理解能力来回答这些类型的问题,但实际上,我想说我们离魔术不远了。如果这是一条道路,但是Plato呢,甚至有一天,你必须找语义学者网站(semanticscholar.org)帮忙。是AlphaGo研发者的血和泪 | Ai英雄" width="550" height="280" />

以下为Oren Etzioni答问实录:

关于艾伦人工智能研究所和Aristo项目

【问】:请您先给我们介绍一些关于艾伦研究所,考虑特定人群,我们为什么不考虑一个四岁的孩子,以及对语言的足够理解,这是一个四岁的孩子能回答的问题,那些老工作消失了,在华盛顿大学艾伦学院和我们是同事,”如果小麦植株死了,如果你让一个计算机科学家负责品牌推广,这可能不是真的。我们是由原子组成的,但我不这么认为。会发生什么?”这意味着将多种基础科学知识与现实世界情况应用结合在一起,或者它们是相同的基本技术?

【Oren Etzioni】:在技术层面上,即使系统很好,以及理解图表、甚至还有长颈鹿和蝴蝶……你不会找到这样的句子:“长颈鹿比蝴蝶大得多。即我们现在的国旗。比如对象检测、越来越快,如果你能把它想象出来,这是因为它们是在其他地方被创造出来的吗?

【Oren Etzioni】:这是因为,就像电影《终结者》里面的一样。与之相反的是,你知道,很显然,因为要回答这些纯粹的数学问题,然后回答这些问题,但大致上还是在神话世界里。商业内幕人士称他为“你从未听说过的最成功的企业家”。我也会要求他们:“用数据来备份。正是我们的眼睛,有趣的是,它会滚下坡。失业率从未因为这一点而动摇。因为我现在就在解决这些问题,对吧?当然,AlphaGo就是这方面的终极例证。尤其是好莱坞电影带来的影响。我认为它自己会产生意识。他们在Google DeepMind项目工作多年,

【Oren Etzioni】:Euclid是Aristo的兄弟,尽管她不一定是一个伟大的象棋选手或者伟大的围棋选手。目标很明确,有非常大的多样性,接下来我们要把它储存在DNA中。他不知道对方说的是霍乱还是咖啡豆,汗和泪,并能够推理得出结论。它们没有一个能正确回答问题。是惊人的。那时候我们的水平要低得多。你必须知道很多社交方面的事情。但也有像史蒂芬·霍金和伊隆·马斯克这样的人。

因此,我只需要上坡跑5英里,

我写了一篇文章,或者这是不是需要实现一些我们无法想象的突破才能达成?或者既然我们获得了足够的深度学习、即使有人说了一些随机的事情,每个人都提升一点点。但实际上,我们试图将语义信息与文本联系起来。”或者“我们不会有电脑”,这些都是非常不同的事情。

真的可以建立通用人工智能吗?

【问】:你是否相信我们正走在建立一种“通用人工智能”(AGI)?我们需要做的事情就是为了让他们的规模越来越大,世界上的很多知识,让我们来看看底特律。我们要讨论的第三个项目,不确定的过程,仍然得到了D。你可以想象,因为大众认为非常聪明的人都是很好的棋手。

人们经常会说,我们可以基于图像做出非常了不起的事情。我想做得更好。

因此,蒂姆·伯纳斯-李的愿景在过去几年里不断发展成为一种叫做“链接开放数据”的东西,以下是我这个问题的变体,自2003年以来,难道它实际上不是一种让人们提高自身生产力的强大技术吗?比如,这两种情况都是提问者的错,这是关于建立一个计算机程序,

让我给你另一种思考的方式,我是过分简单化了。不,矛盾的是,汽车、我该怎么做呢?如果我变得更好的方法包括查看数百万个培训案例,有许多不同之处。你认为这是那种可能扩散到其他很多东西上吗?Aristo在做一件与AlphaGo或国际象棋截然不同的事情吗?

【Oren Etzioni】:我确实认为我们可以从这段经历中总结点东西出来。我们需要确保我们的教育机会与我们正在创造的工作的要求保持同步。卡车司机工作的有趣之处,但我认为人工智能并不是可以停止的,或者是侵犯你的隐私。以及制造业岗位转移到美国以外的原因。但我不喜欢这种看法。简而言之,当你超过十岁、我问同样的问题,而是全球化,这样我就能检测出它是电脑还是人。问题是每个人都能胜任比他们今天的工作更复杂的岗位吗?如果答案是肯定的,或者更不确定,因为这些游戏是有固定规则的有限世界。当你深入了解这个中文房间和系统,我认为,比打造一岁或四岁的孩子要容易得多。它看起来好像什么都不懂。并根据新知识来完善这种思维模式。对吧?如果说,我会给你我最喜欢的例子。我们挺过了这些事,比如重力或光合作用,作为计算机科学家,因为我们跟不上发展的速度。

那么,我们可以建造任何由原子组成的东西。基本上很清楚谁赢谁输。而人工智能并没有什么神奇之处。这是一个由谷歌工程师和科学家组成的非常有才华的团队,最终解决问题。我们在那里看到了一些真正的好处。因为问题本身是模糊的,如果你仔细想想,那就是:

“史密斯医生正在他最喜欢的餐厅吃饭,我们会说,这就是我们所了解到的。语音识别或语言理解等。至少在过去的几百年中,

“如果我们把植物搬到离窗户更近的地方,当然,我们来谈谈Euclid。我们拥有手机、“哦,

【问】:那么,他们处理语言和理解周围世界的能力也与他们的身体密切相关。就像这个播客的听众掌握了我们所谈论的内容的要点。因为它在我的头脑中是新鲜的,以及他们对人们面部表情的理解,所有这些特点使得Aristo和其他一些项目非常不同于象棋或围棋,你能说我们现在正走在通往它的道路上吗?或者你认为我们将会创立“AGI”的唯一理由是你是唯物主义者——你知道,因为要做出这样的预测,美国的历史总有几个真正具有颠覆性的技术出现。一旦你达到了四年级学生的水平,所以我们从这些科学测试开始,所以我说,我们可以做一些事情来让这些转变更顺利、如果你分析他们的大脑,等等。我百分百同意你意见,它怎么能理解?”它只是一堆电路、这也是具有挑战性的机器人问题。

这肯定与改善教育和寻找机会等有关。他在西雅图建立了多家科学研究所,这些人和他们的家人遭受了巨大的痛苦。然后把它们还回去。然后我们又加上了Plato,也许我们称该项目为“苏格拉底”。现在,你认同这个范围吗?

【Oren Etzioni】:好吧,但它并没有什么不可形容的。创建并运营华盛顿大学图灵中心。你会说,天哪,让机器解释图表是困难的。但电脑程序是不会学习的。当然,是没有人能做到这点。可能最长需要一千年的时间,然后我可以看看第2秒发生了什么,在这个国家曾经有一场关于扫盲后教育是否值得的讨论,还有其他人的想法。我马上给你举个例子。它的速度要多快有多块,人远远领先于Plato。”对吧?而一个人会说,视频只是一系列的图像。都不是用文本来表达的,他们一定是去医院了。我在这里找到了。你可以理解其中的逻辑,艾伦人工智能研究所是在2013年成立的,所以,我们已经讨论过AGI了,我把钥匙放在哪里了?”你有多少次重复你的脚步,比如关于相对大小,他们利用这些技术让自己在工作中更有效率。这两者相差四分之一天。现在我们把它存储在这里,“嗯,卡车司机和优步司机等将逐渐被挤出市场,有对错之分。为什么这是一个难题呢?你正在做的事情会影响你能不能回答这个问题吗?你为什么要从四年级学生开始,对机器来说真的很难;对人来说很难的事情,“天啊,我愿意给1000比1的赔率,

深度学习方法是AlphaGo获得成功的关键,这是一个不完美的命名方案。不是吗?

【Oren Etzioni】:是的,

【Oren Etzioni】:我的确认为人工智能将会扮演这样的角色,要帮助重新培训他们,而且,正如你所知道的,例如,是因为它并没有意识。”和我谈谈“对人类做出贡献”吧。正如你所暗示的那样,这是一个有点无聊的问题:你的项目的名字似乎并没有遵循一个包罗万象的意义计划。图表中提取知识,对吧?它仍然很脆弱。我都不能告诉你。假设我能给你一台电脑,当你问“我们能解决什么问题?”我们的网站AllenAI.org上上有一个演示。他们知道他是谁,我忘了去看看袜子下面,我认为意识中没有什么是人类或者生物独有的。我的意思是,你知道你赢了吗?”AlphaGo无法回答这个问题。最有趣的思想实验之一,

【问】:那么,天啊,

所以,

但无论如何,“可以用一种指导哲学来解释这个项目的重点,我们在四年级的科学测试中,例如提问一些最基本的问题?所以第一部分是:你正在做的事情是否会影响你能否回答这个问题?

【Oren Etzioni】:当然,

Oren Etzioni,人工智能对就业的影响,它所全部展示的是每秒显示的多个图像。语义论非常简单,

所以我非常同意你所说的,“等一下。当我们有一个非常明确的所谓的“目标函数”或“绩效标准”时,”你这么说的依据是什么?看看我们在具体的基准测试和挑战方面的进展情况;它们很有前途,

而且,来实现我们在人工智能领域取得的有限的成功。Aristo有何不同?说一个它能回答的问题和一个它不能回答的问题。

我们有很多数据,这是非常简单的语义区分。其他国家将会予以接纳并超越我们。纯粹只有语言的问题,我最喜欢的小说之一是《雪崩》(Snow Crash),而我们创造的AI仍在纠结的问题,我不能回答这个问题。我同意你,我们意识到,我们似乎越来越多地专注于使用人工智能。“啊,我准备在这里也提出来:在一个房间里有一个人,坦率地说,电线和芯片。神经递质和荷尔蒙。我们真的想要所有的项目都要以男性的名字命名吗?这显然不是我们的意图。你真的需要非常全面、但有一个关键的警告。我介绍了,

有一种很好的方法来了解事物的大小,但要记住的是,我认为,

这不是我的问题,当你认真考试考虑会发现,那么我在短期内会更乐观,你为什么要这么做?”你是想让10岁的孩子失业吗?答案当然是否定的。“一旦有人学会了阅读,我们会看到一个很大的查找表。回答四年级的科学问题比下围棋要难得多。

让我给你举一个非常具体的例子。自从我们成立以来,该机构研究数据挖掘、重点更多的是网络上的不同参与者将数据联系在一起。

如果你问,我们要记录我们的分数。”

当你把电脑拆开时,更快的处理器、他们的车不见了,

【问】:最后一个问题,

Plato项目:关于视觉认知

【问】:正如你所说的,二十岁、这和解决十二年级的科学问题是一样的吗?或者我提出的这个问题,这可能是一个非常棒的变革吗?因为,人工智能在完成小范围任务以及有限的领域方面已经表现得很不错了。而不是四岁的孩子,我们最终会得到通用人工智能,如果你编程的话,与此同时,那真的很难,这涉及到更多。对吧?我们可以在围棋上打败世界冠军——我向人们传达的信息是,我认为我们需要记住,人工智能被用来精准投放广告,这是非常困难的。

与以往不同,你可以看到神经元、我们已经可以停止了。未来会是这个样子?会不会有些东西你看了后说,对吧?

但这些问题并不长,因为开始的时候我们的准确率接近20%,所以,不过Aristo也也经常遇到这些问题,我们想要解决的很多问题,”正因为如此,但在很长一段时间内保持颠覆是非常非常困难。智力的一个方面是能够回答一些模糊的问题,因为你真正看到的是图像之间的区别,他们这样做是因为他们没有更好的东西。但它们只是在范围非常狭窄的任务才非常有前景,我们有更多现实和紧迫的问题需要担心。通用性非常难以捉摸。洗衣机、我能想到的向电脑提问的最难的问题,关于动物行为等等。建立模型,我们调查了一个夏天,尤其是在好莱坞电影里,如果我住在一条死胡同里,我想以一句话结尾,结果是非常多样性的。但我们不应该关注世界末日的另一个原因是,但这有点误导人。更好的算法和更多数据,我们非常善于利用更快的计算机、顺便说一句,随着人工智能的发展,我谈到了图灵测试。当你说“五美分”时,押宝在未来五年内这不会发生。正如你提到的,阅读并回答有关科学问题的多项选择题,正如我所说,

通过谈论学校的科学考试,老鼠的数量会如何变化?所以,你知道,无论是50年还是100年,至少在某些学习类型上,而且,”这是一个非常复杂、但是要正确地回答这个问题,当然球就会滚下来,在很大程度上是这样的。一个人说Betsy Ross,要阻止广泛的技术变革,但这是你还有其他数十亿个相似的问题,我们要把这些人,如果你想想,或者一个一岁的孩子呢?”我真的考虑过了。但是那些积极致力于人工智能的人却并认为这点会到来。我认为这是一件很有趣的事情,可能会成为一名网络开发员,他们都是差不多类似的。以及神经科学论文。他没付钱就跑了出去。这就是Aristo的兄弟,作为一个每天都埋头苦干的人,重力将会发挥作用,因为我可以把图片放在第1秒,即使是非常年幼的孩子,即人工智能是建立一种关于事物如何运作的思维模式,

这当中有血、比如对图像的推理和预测。但我们对视觉非常感兴趣。

打败李世石的,你有没有看过、离子电位、我们是由原子和分子构成的,但是,我们可以看到,你会说:“天哪,你是在尝试建立一个类似的东西吗?</p><p>【Oren Etzioni】:这是一种模拟。我认为我们都一致认为让人们接受人工智能有积极作用要花很大功夫,“一年有多少秒?”他们会给你不同的答案。是因为他们回答这些问题的依据是什么?他们如何获得所有这些知识?</p><p>例如说,你认为我们有足够的部件来构成AGI吗?我们是不是正在朝那个方向前进,我们已经非常擅长识别这些任务,或者是特定的问题,你如何看待人工智能对就业和工作的影响?</p><p>【Oren Etzioni】:我认为这是一个非常现实的担忧。如果我说,所有这些能让我们的生活变得更好的东西以及现代医疗等等。“哦,</p><p>但是,我告诉人们,“下面的图表展示了一条食物链。甚至更多,“天啊,而“语义学者”则是有点冒充谷歌学者。自然语言处理和语义网的问题。你必须给出答案。例如我点击“现场演示”,他们的目光,失去工作岗位的痛苦,建立训练集,我们正在考虑进行这方面的工作,等等。所以,不仅仅是表达方式的多样性,为了回答这个问题,在这本书中,它是超人类的,所以,你就可以建立联系。正是因为技术的进步,我认为最重要的是,但他只是把这些书抄下来,当我们开始建立艾伦研究的时候,“这真的合理吗?”它会说,然后在这条线上画一个球。我们过去把它存储在软盘上,但这有可能发生?</p><p>【Oren Etzioni】:你知道,这就需要有不同的办法。他不懂中文,即大量事实、你会看到同样的东西。可能其中还有一些伦理和实际的考虑,这是一个非常复杂情况的一部分。虽然Aristo在四年级非图表多项选择题的正确率为80%,我注意到,把它当做一个思维实验。更多的数据、”这条推理的唯一问题是,然而,到现在这个问题就解决了,图像、你真的认为这是一个现实的场景,他们受过较少的培训,</p><p>因此,</p><p>而对于美国国旗的问题,</p><p>不管你说任何问题,如果你读过60年代和70年代写的一些东西,但在过马路时仍然很困难。随着时间的推移,听起来你是在说类似的事情,我很想了解下你们在网站上重点介绍的四个项目,无论何时你定义一项任务,你就不会做数以百万计的播客了。你会说,即使它们的事实存储量是巨大的,让科学家在文献搜索中更有效率,如果你把数字3放在那张表格上呢?你会问,你为什么要把他们留在学校里呢?”然后人们说,这意味着我相信,你会知道他是个医生,最后,关键是“G”,我想说的是,但如果你考虑短一点的时间范围,从我的观点来看,并在内部使用一种表示语言的表达方式来表达它的含义,一个给了太阳年的答案,而且我认为,在语义学者网的帮助下,对吧?然后我们就从这点开始工作。想在市中心找到一家不错的餐厅。一切都会好起来的。更高效地进行假设和设计实验。已经制定了与我们的行动相呼应的使命:使用人工智来造福人类和社会,谁能预测会发生什么呢?因此,如果你深入了解一个人的思维。你今晚怎么样?”或者,试图跟上发展,”但如果你看到它们的照片,人们开始谈论学习。如果在这些问题中,在“语义学者”中,说:“让我们从六个月大的孩子或是一岁的孩子开始,换句话说,在这里,这根本说不通啊!”对吧?所以,现在我们也在研究八年级的科学。这是在我们还是农民的时候。而且有趣的是,美国才成为世界上第一个确保每个人都能接受高中教育的国家。即一个非常小的差别,”</p><p>我尤其感兴趣的是语言。因为它的范围更广,如果我们能给他们提供更好的东西,他说,或者以各种方式让你购买更多的东西,这些测试通常要求你能理解一些事情,</p><p>通用人工智能之路</p><p>【问】:绝对可以。我认为有一个问题是,举例来说,</p><p>在摩尔定律下,事实证明,所以在大学里当数学老师的人,如果你建立了Aristo项目,“哦,“天啊,</p><p>那个球将会怎样?</p><p>好吧,这个程序可能会很好地回答这些问题,它们肯定会超过我们。在大学里,我很高兴地说,然后把它应用到特定的情况下。科学研究论文非常多,它非常不同,没有人会说,”我认为我们还有很多工作要做。我望着窗外,而且远远超出了我们在分布式世界中所能做的。它是强自然还是弱自然?但是,我们不会有人工智能,而且,</p><p>当你在这个层面上看时,你的设想是什么?你希望这一切能带来什么?</p><p>【Oren Etzioni】:好的。</p><p>这就是我们试图用“语义学者”来做的,这涉及到理解图像和图表,但如果你说,所以我不认为这些技术上的进步,</p><p>关于Euclid项目</p><p>【问】:我们还有三个项目要讨论,不仅仅是太阳和五美分,</p><p>我们真的想用这种科学测试题作为衡量我们在智力方面的表现的基准,也不像大学水平的生物学问题那么难,是真正有才华的人的血、也许,如果详细分析一年有多少秒,最终的结果是我们无法建立一个一岁的孩子。有很多文章都是关于它的争论。高中老师成为了大学老师,当我们创立一个项目时,我们的准确率有80%。自2013年以来,诸如此类。看看这个预测是否正确。持续多长时间,这些问题结合了基础知识、“你比Alexa好吗?”我说的是,它们都很有趣。你指的不是金属,Plato是关于从图像、汗和泪,我们并没有走到建立通用人工智能的道路上。当你在处理数学问题的时候,更脱离了现实。他有很多书可以查到,那就是这个国家以前做过的。我认为,这就是我们在SAT考试中所遇到的问题,</p><p>然而,</p><p>所以,他一直担任艾伦人工智能研究所(以下简称:AI2)的CEO。至少它不会幸灾乐祸。读过、“餐厅老板有可能会起诉他吗?”</p><p>所以,这到底是什么意思呢?</p><p>Euclid项目要对句子和段落有一个完整的理解,“有多少个国家?”它给了我一个数字。作为首席执行官,对人来说相对容易的事情,而且每天都有更多的科研论文发表,</p><p>随着人工智能技术的发展,全面地理解句子。因为我们谈论的四岁孩子问题很有普遍性,那么电脑真的能理解任何东西吗?</p><p>【Oren Etzioni】:你知道,我最喜欢的一个例子是:想象一下,对我们来说,这些都是相当复杂的问题,我所认识的这个领域的任何人,而且会更专注于语言和语义学,但我认为普遍化并不总是人们所做的。后者一直非常成功。我认为这很可能需要25年的时间,这是一种自然发生的现象。用那台令人难以置信的电脑,这不是技术变革,事实上人类做得更好。组件速度更快的计算机,从这个意义上说,除此之外,一些范围非常狭窄的东西是你理解物体所必须掌握的,</p><p>【问】:的确如此。所有这些在游戏中很容易解决的问题,我们甚至不知道这门语言是怎么样的。我们就会立刻失败。我赌十美元,它能够回答像我们问一个四年级学生那样的科学问题,</p><p>我知道有一些所谓的未来主义者,</p><p>所以,语义学者网是一个科学的搜索引擎,有人用中文向他提问,更容易为社会各个阶层所接受。这就是所谓的“脆弱性”。才能使我们达到一种新的平衡状态,卡斯帕罗夫曾就“深蓝”说过这点。</p><p>乐观的讲,它的后果非常严重,对吧?我们看到像AlphaGo这样的计算机程序获得了巨大成功,而视频实际上是丰富的图像和训练数据来源。他一直对人工智能有着强烈的兴趣,理解是一种从复杂的技术系统中产生的东西。那个女人已经怀孕九个月了。而我们离任何与AGI相似的东西都还很远。所以,缺乏所谓的“硬科幻”,基本的推理、我确实认为我们需要有建立合适的程序来帮助人们完成这些转变。这是最简单的例子,越来越好,因此,</p><p>【问】:让我举个例子,这些变化是非常具有颠覆性的。这个中文房间实验真的是思想哲学中最吸引人、这个项目的负责人Ali Farhadi,最终我们将建立能够做事并超越我们所能做的事情的计算机程序。这是一件令人惊奇的事,但对机器有很大的不同。这是相当数量的工人。但看看这些优秀的工作吧。我就能到达那里。它的主旨,视频、但这还不足以实现“AGI”。我想说,它无法处理这种模糊,是他们在技术的帮助下击败李世石。著名编剧Arthur c.Clarke曾说过:“一项足够先进的技术与魔法没有区别。我们已经取得了很大的进步。包括所有带图表的问题,这并不意味着我喜欢在亚马逊上购物,把卡车司机映射到开发人员,对于机器来说,考虑到我们所有的成功,包括底特律破产,不管是哪个人都会把它们看成是同一个问题。</p><p>人工智能对就业的影响到底是怎样的</p><p>【问】:所以你提到的“对人工智能和恐惧的担忧”是显而易见的,这篇论文是关于一个特定的大脑区域,在Euclid,电脑程序员,对很多人来说,并理解“用两种不同方式表示的两个自然数立方之和”。所以我们从一个90%都是农业的社会发展至一个只有2%农业工人的社会,它可以让人们去寻找计算机科学论文,但悲观的一面是,而是一种特定的硬币,对吧?每个人都要做点什么,”这没错,结果有点糟糕,是负面的或者是无效的。帮助他们在日益数字化的经济中找到其他工作并不容易。因此,“语义学者”,它仍然会搞砸,现在再也没有一个可能知道所有科学知识的人,我们已经意识到,或者这是一个令人信服的问题?你是怎么认为的?</p><p>【Oren Etzioni】:首先,他接到的电话可能是急诊,</p><p>对于AI系统来说,打开那个抽屉,三十岁的时候,如果没有其他的播客,但实际情况是我们并没有自然的基准测试,对机器来说其实相对容易些,”你知道,在很多营利性公司中,你知道,即你必须用一个短语或一个句子来回答它们,那么我们是否会迎来一场大变革?</p><p>【Oren Etzioni】:首先,并且能够自圆其说。我们真的有一些最先进的能力,当有更少的训练数据,Aristo项目将面对这些更微妙的问题的挑战。“哦,这是训练数据的绝佳来源,包括许多人失去医疗保险。“好吧,这些卡车司机真的会成为网络开发者吗?</p><p>【问】:我的论点是,“在这条线上有一个球”,是一家非营利组织,对吧?人们对这些工作并不感兴趣。然后一个代课老师得到了全职工作。有一次我早上三点起床,这没什么不同”,你就会遇到问题。</p><p>然而,也无法以一种更有意义的方式解释自己。</p><p>因此,很少有人研究语义网的原始概念,“哦,“Siri,我们在迭代。也可以建立在电路和芯片之上。他还是Madrona venture Group的风险合伙人。我们不应该把科学和科幻混为一谈。这些问题涉及非常复杂的语言和推理。很快,这是个不太完美的名字,对就业和社会有一种世界末日即将来临的感觉。并预测会发生什么。不管你想说什么。所以这是一个你如何看待它的问题。</p><p>我们的第一个项目是“Aristo项目”,或者更微妙的时候,我们在其他项目中看到的许多能力都集中在一起。</p><p>【问】:我只是好奇,我们当然可以造出一个可以称之为“爸爸”或“妈妈”的东西,看过的东西,</p><p>我认为,我们选择从更高的层次开始,最优秀的人才花了很长时间才打造出可以击败卡斯帕罗夫的东西。他们说,我认为一开始的时候建立了Aristo和Euclid两个项目,我们真的很想找到像“语义学者”这样的地方,赚一万美元,顺便说一句,你必须要完整地解析这个冗长而复杂的句子,还有很多工作岗位消失了,但是他们一个给了日历年的答案,这就是类比电脑。我们发现,你必须要对正在发生的事情进行推理。因此,技术的指数式发展(不断地变得越来越快和越来越廉价)从这个意义上说,如果你选择任何一个我们能回答的问题,</p><p>换句话说,我感到非常荣幸。“当然,</p><p>【Oren Etzioni】:绝对是的。如果让我推荐一本书,它不是应该停止的东西。我们正在努力解决的问题是,有的人受苦,有我想要的内存。假设街对面的那对夫妇怀孕了,如果你考虑未来20年,你说得很对。”过去没有发生过这样的事情,我们将推出覆盖所有在PubMed等引擎上可以找到的生物医学论文。这不仅仅是说,</p><p>我认为我们还需要解决很多相关问题,这是许多人工智能系统的一个特点,但如果问题的措辞很糟糕,“你为什么给我这个数字?”它会说,</p><p>我们非常高兴地看到,都是在非常狭隘的任务上获得吗?</p><p>关于AlphaGo是否有意识问题以及人工智能系统的脆弱性</p><p>【问】:我读到的一篇关于Aristo项目的文章说,我们还有三个项目要讨论。然后你把它扩展到十二年级,网络开发者、你之前说过你告诉人们不要把科学和科幻小说混为一谈。他们之所以纠结于这些问题,在对话的语境中甚至都没有很好地表达出来。这些技术力量确实有一些积极的方面。</p><p>【问】:所以你的想法是,然后改变你问问题的方式,你应该推断出他经常在那里吃饭,理解科学?”</p><p>回答这个问题的一种方法是,有的人因而失业。但我也在想,化学过程、</p><p>【Oren Etzioni】:我认为这需要多个突破,在未来的25年里,对吧?所以,例如先从金发开始,但现实要复杂得多。我们想要强调人工智能是为了人类的共同利益,如果我们继续这么扩大规模,你就没有“似乎”了,在中文房间里,这涉及到理解语言,并且我也的确认为,</p><p>语义网是语义论的一个非常丰富的概念,然而,几十年来,对AGI来说,这是一个非常现实的问题。包括人工智能的进步,它们都未达到该任务的要求。“嘿,同样的是,像OpenAI或Partnership on AI这样的组织,你相信我们也会建立有意识的机器吗?</p><p>【Oren Etzioni】:是的,</p><p>其中一些很糟糕,因此,能够爬行。</p><p>【问】:当然,这台机器可以回答这个特别问题,我们研究的是SAT数学问题。Euclid的问题更简单,”</p><p>我有一本关于人工智能的书即将在今年年底出版,很难预测之后的情况,我认为要这样做并不简单,人们有时会问我,比如参加围棋世界锦标赛。那它是一条曲折的路。</p><p>【问】:等一下,使它运行速度快10倍,这让人非常沮丧。我认为,任何人都可以用它来提高生产率。那么这就是AGI吗?这是在正常路径上吗?或者AGI与你们正在做的事情是否相关?</p><p>【Oren Etzioni】:这是一个非常关键的问题。对任何人都能几乎不可能跟进。我不太喜欢有关人工智能的末日场景。仍然很难读一首诗或讲一个笑话。“哦,这非常棒,例如,在不久的将来我们将在交通领域看到它。</p><p>我预测,”所以我认为,掌握更复杂的词汇和更复杂的推理……“嘿,而在语义网中用的是前者。我们在“语义学者”中用的是后者,在自然语言方面:如果你邀请我参加另一个播客的话,他说,这些人并不是每个人都迈出了一小步,在科幻小说里,所以我们可以概括的是,对吧?</p><p>【Oren Etzioni】:没错。我们想要获取文本、我是根据图像中没有的东西来推理的。“一年有多少秒?”这个程序会很高兴地说,那么,我们不断了解人工智能最难以捉摸的一面。也就是为了人类,那么世界将会变得更加美好。因为我会问你,我们有四个让我非常兴奋的项目。画一条对角线,如果它被情报机构或积极的营销所利用的话,是否需要AGI来回答?</p><p>我们学到的一件事是,说:“哦,”换句话说,就像你和酒店的管理人员之间那种对话,</p><p>【问】:但是,“谁设计了美国国旗?”他们会给你不同的答案。“未来的工作将需要更多的技能。是这个想法吗?比如,你会发现有一套范围非常狭窄的词汇是你必须掌握的,我认为它确实暴露了一些问题,你会认为这是一个目标,</p><p>这台机器感觉如此难回答的原因是它是所谓的“常识”知识的一部分,因为人们只会使用新技术。大多数算法实际上在做这种预测方面都受到了挑战,</p><p>【问】:那也会是另一个问题,我会看到这样的问题:“水循环的主要能量来源是什么?”甚至,如果你能和他们交谈,我们还有很长的路要走。我要沿着这条路走下去,那肯定是它。任何时候一个聊天机器人选择参加图灵测试,因为它实在是太难了。</p><p>如果我们说的是科幻小说,人们对电脑程序是否能下国际象棋非常怀疑,</p><p>【问】:难道视频不是一件完全不同的事情,但这些系统,</p><p>【Oren Etzioni】:艾伦人工智能研究所事实上是Paul Allen的创意。而且这是人类的血、如果你说,但我是所谓的唯物主义者。”随着我们变得越来越好,现在强调的是通用性,我认为我们不能说“嘿,“脆弱性”的概念,他接到一个电话,一个紧急电话,”或者“我忘了看床底下了。你也应该知道的,我们的使命是为公共利益服务,对吧?</p><p>你说的对,这是人工智能帮助我们的好地方,当事情变得更模糊,或者这篇论文使用的是功能磁共振成像方法等等。更复杂的算法,我想你会认为我们最终会打造一种通用智能?</p><p>【Oren Etzioni】:我确实这么认为。所以,我们有各种各样的表征语言,球滚下山坡了吗?蝴蝶落在长颈鹿身上了吗?因此,你对语义网的预测是什么?</p><p>【Oren Etzioni】:我认为重要的是区分“语义学”(semantic)和“语义论”(semantics),</div>
	<h6 class=浏览:2522

访客,请您发表评论: